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HELICAL EDDIES OF DELTA WINGS

Note (x) by Robert Iegendre, presented
by Maurice Roy h

The problem is reduced to the solution of a nonlinear
integrodifferential equation.

1. If, in accordance with the scheme proposed by Maurice Roy,
the flow in the vicinity of the apex of a delta wing with helical
eddy bands is quasi-irrotational and conical and if, either because
the sweepback angle f is high or the Mach number approaches unity,
the potential ® is more or less an harmonic function of y and z
(Oxyz orthogonal axes, O apex of wing, Ox axis of wing, Oy in plane
of wing), this potential is approximately the real part of

y + iz

& = Vox cos @ + Vox sin @ cot F(E), €

x cot T

where ¢ is the incidence and Vb the velocity at infinity.

The components u, v, w of the velocity are given by

v - iw

Yo

<f|c

= cos @ + sin & cot £ A (F - CFg), = sin @ Fp.

0

2. The function F({) is holomorphic in the plane { cut by
the trace of the wing, - 1 < { < 1, prolonged by the traces of the

two bands, except at infinity, in the vicinity of which it behaves
as - i{ with F - QFQ = 0, so that
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u=YV, cos o, v , w=V_sin o.

In the plane & defined by § = cos ©, the function F(cos 6) is holo-
morphic, except on the traces of the bands and at infinity. It is
real for real © and for the purely imaginary 6 = (en + 1) 2,
where n is an integer.

The function FQ(C) = Ft(cos 8) is zero in 8= (2n + 1)7/2 and

finite for € = n, this last condition so that Joukowsky's rule may
be satisfied at the leading edges.

3. The continuity of pressure across a band imposes the
condition of continuity of the intensity V of the velocity, that is,
within the framework of the linearization which already justifies
the form of &, and with the proviso that the discomtinuities in v
and w are moderate, the continuity of the component u or the real
part of the function F - QFQ. This function can now be represented

by a distribution of sources over the traces of the bands in the
plane ©,

0

F - (Fp = J 1n [(sin © - sin 8)(sin O - sin 0)] Dy(y) dy,
0

where y is a parameter describing the band attached to the leading

edge © = 0. This parameter increases from O at the leading edge to
infinity at the end of the band. The function 0(y) is a parametric
representation of the band ® = 0(y), and D(y) is a real function.

L, The above representation of F - CF. can be integrated:

¢

T = J In [(sin O - sin 8)(sin O - sin 8)] D7<7) dy
0
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The values of the logarithms are zero for 6 = - W/E in Pt. That of
the first logarithithm in F is arbitrary.

5. In order that the function F - {F, be zero at infinity,

o
the sum of the sources must be zero:
(1) D(O) = D(oo) = O.
In order that Fg, zero in O = - T/2, should also be zero in & =

= + W/E, we must have

0 cos

(2) fm @( 1 6) Dy('y) dy = O.

There is no condition to be written at the leading edge, where T
is finite at least if D(y) is regular.
In order that F({) = - 1 at infinity, we must have




1l
‘,..J

(3) -—I: &<g€:—3>1§7(7)d7

6. The traces of the flow surfaces in the plane { are de-
fined by:

x 40 =tan £(dy + idz) - £ dx = [tan (v + iw) - lul dt

= V,cos o[tan atan £FF - C(1 + tan @ cotf R(F - [F))] dt,

where t is time. Substitution of the parameter y gives:

1: tan oz‘canfﬁg - {(1 + tan o cotf R(F - QFQ)) ]

R

i§7

In particular, the helical bands are flow surfaces § = &(y) = cos
[0(y)] for the flow on both sides corresponding to the values
F + 8F/2 of the function F. This implies the two conditions:

ST -
o &[] o

= &
€ (7) { tan oenf Ff - C[1 + tan @ cot £ R(F - CFr )] ]
(5) R[ i
Y
7. Condition (4) makes it possible to calculate Dy(y) as a /%816

function of O(y)




® D (y)dy
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- 0
Dg(?’) = 18 'a:}', [)‘g,},})

where A is a real function defined by

The constant KO is found from condition (3) and conditions (1) and

(2) are global for O(y). Other conditions to be fulfilled for A
to be acceptable relate to the behavior of 0(y) in the neighbor-
hood of the zeros of

o)
5 (B8 =8 + 8,

8. The function E(y) = cos [0(y)] which remains to be de-
termined can be linked with the real function k(y)

™

. iy i(y + 3)

o) = o =(k + 27,
() = (& + 1k7)e , y ( kyy)e

The parameter y impHeitly chosen is such that y + ﬂ/2 is the angle
made with the real axis by the tangent to the trace of the helical
eddy band in the plane 9, whereas the radius of curvature R of this




band is R =k + k__.
and 1is vy

Thus, condition (5) is a nonlinear integrodifferential
equation applicable to the unigque real function k(y), which must
also satisfy the global conditions of paragraph 7 defining the
constants of integration.

9. It is difficult to calculate the solution k(y) or even
to show that a well-defined one exists. If it does, F is a func-
tion of {, @, £. However, if tan @ cot f is small compared with 1,
condition (5) reduces to

[ ten o tanf Fg - ]

1Q7

(58) R

=0

and F depends only on { and tan o tan F.

10. The experimental results suggest the choice for k(y)
of an even function of y, zero for y = O and such that the radius
R=k+ kyy quickly tends to zero as y increases. If k(y) depends

on a fairly large number of parameters, to be determined as a func-
tion of o and f, the global conditions can be satisfied, and condi-
tion (5) or (5a) can be written at several points to obtain an
approximation.

11. 1In a previous paper [1] relating to the flow of an in-
compressible fluid around a delta wing, the equation satisfied by
the potential and the condition of continuity of pressure were not
simplified, but the discussion was more complex. No hypothesis was
made concerning the order of magnitude of the velocity, which could
assume a high or even infinite value at the end of a band, as sug-
gested by the experimental results, complicated though these may
be, on the effects of viscosity.

(x) Meeting of 4 December 1963
[1] Helical Eddy Bands at the Leading Edges of a Delta Wing,
Is Recherche aerconautique, May 1959.

/3817




Some Remarks on the Above Note

Maurice Roy

I take all the more pleasure in presenting the above Note
in that it makes an important contribution to the determination,
for a plane indeterminate delta wing, of the helical eddy bands,
which I introduced in 1952 {1] to schematize the flow around a
wing of this sort.

This very remarkable advance consists, thanks to an ingen-
ious choice of the parameter y and the treatment of the function
(F - CFQ), in reducing the determination in question to the solu-

tion of a unique and real function K(y) satisfying a real and
nonlinear integrodifferential equation.

This concept confirms that of the equivalence of a helical
eddy band, for R. Legendre's reduced transverse pseudo-flow in the
plane §, and a distribution of source eddies over the "trace" of
the band, a distribution reducible to a simple source distribution
for the determination of Legendre's function (F - CFQ).

However, I would like to recall that, in accordance with
the concept that I defined in 1957 [2], this band would be bordered
by a "flange" type of source eddy, that is, one of finite intensity
distributed over a falrly small cross-sectional area and repre-
sented schematically, in relation to the flow close to the wing,
by a concentrated source eddy, a so-called "apex eddy." In fact,
the sources in question are negative, i.e., the above eddies are
of the well type. In the transverse pseudo-flow (plane T, § of my
1957 Note), these wells are compensated by distributed sources,
which might be schematized, in relation to the flow close to the
wing, by one or more finite, discrete sources.

It is to be hoped that the ingenious theoretical simpli-
fication of the above Note will soon produce some numerical solu~
tions for special cases.

[1] Comptes rendus, 234, p. 2501, 1952.
[2] Comptes rendus, 24k, p. 1105, 1957.
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